If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40k^2-90k-90=0
a = 40; b = -90; c = -90;
Δ = b2-4ac
Δ = -902-4·40·(-90)
Δ = 22500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{22500}=150$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-150}{2*40}=\frac{-60}{80} =-3/4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+150}{2*40}=\frac{240}{80} =3 $
| -28v=-280 | | 2x+30=3800 | | 116=k-384 | | 4x+7-2=3x+11 | | 3X+y=205 | | 30x=3800 | | 2g−8=28 | | 26q=-19q^2 | | j+518=872 | | s+-220=-853 | | g^2=-10g | | 5/7u-3/2u=1 | | 8u=992 | | 51-x=18 | | 24f=264 | | d-41=90 | | c+162=565 | | 69=m-262 | | 4x+1.2=4x-0.1 | | 30=y-26 | | 6-19=3y-7 | | 30=y−26 | | 6x2+28x-208=0 | | 643=m+29 | | -28+-w=25 | | Y=3.16x+3.75 | | q-40=7 | | Y=$3.16x+$3.75 | | Y-1/2y=7-4/3y | | 5p+7-5p=-7+21 | | 79x+5x-3=3+8-3x | | X-1/2y=7-4/3y |